An Ideal Platform to Crack the Exam for Leading Institutions in India!

KVS TGT SYLLABUS

Mathematics

Real Numbers:-

- Review of representation of natural numbers, integers, and rational numbers on the number line. Rational numbers as recurring/ terminating decimals. Operations on real numbers.
- Examples of non-recurring/non-terminating decimals. Existence of non-rational numbers (irrational numbers) such as $\sqrt{2}, \sqrt{3}$ and their representation on the number line Explaining that every real number is represented by a unique point on the number line and conversely, viz. every point on the number line represents a unique real number.
- Definition of nth root of a real number.
- Rationalization of real numbers of the type $\frac{1}{a+b \sqrt{x}}$ and $\frac{1}{\sqrt{x}+\sqrt{y}}$ their combinations where x and y are natural number and a and b are integers.
- Laws of exponents with integral powers. Rational exponents with positive real bases.
- Fundamental Theorem of Arithmetic statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of irrationality of $\sqrt{2}, \sqrt{3}, \sqrt{5}$.

Polynomials :-

- Definition of a polynomial in one variable, with examples and counter examples.
- Coefficients of a polynomial, terms of a polynomial and zero polynomial.
- Degree of a polynomial Constant, linear, quadratic and cubic polynomials Monomials, binomials, trinomials. Factors and multiples.
- Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials.
- Remainder Theorem with examples, Factor Theorem.
- Factorization of $a x^{2}+b x+c=0,(a \neq 0)$ where a, b and c are real numbers, and of cubic polynomials using the Factor Theorem.
- The algebraic expressions and identities. Verification of identities:

$$
\begin{aligned}
& (x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x \\
& (x \pm y)^{3}=x^{3} \pm y^{3} \pm 3 x y(x \pm y) \\
& x^{3} \pm y^{3}=(x \pm y)\left(x^{2} \mp x y+y^{2}\right) \\
& x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z\right. \\
& x) \text { and their use in factorization of polynomials. }
\end{aligned}
$$

Linear Equations in Two Variables :-

Linear equations in one variable Introduction to the equation in two variables. Focus on linear equations of the type $\mathbf{a x}+\mathbf{b} \mathbf{y}+\mathbf{c}=0$. Explain that a linear equation in two variables has infinitely many solutions and justify their being written as ordered pairs of real numbers, plotting them and showing that they lie on a line.

Pairs of Linear Equations in Two Variables :-

Pair of linear equations in two variables and graphical method of their solution. consistency/inconsistency.

Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically by substitution, by elimination Simple situational problems.

Quadratic Equations :-

Standard form of a quadratic equation $\mathrm{ax}^{2}+\mathrm{b} \mathbf{x}+\mathbf{c}=\mathbf{0},(\mathrm{a} \neq$ 0). Solutions of quadratic equations (only real roots) by factorization, and by using quadratic formula. Relationship between discriminant and nature of roots.

Arithmetic Progressions :-

Arithmetic Progression, nth term and sum of the first \mathbf{n} terms of AP. and their application in solving daily life problems.

Coordinate Geometry :-

The Cartesian plane, coordinates of a point, names and terms associated with the coordinate plane, notations. Graphs of linear equations. Distance formula. Section formula (internal division)

Introduction to Euclid's Geometry :-
History - Geometry in India and Euclid's geometry. Euclid's method of formalizing observed phenomenon into rigorous Mathematics with definitions, common/obvious notions, axioms/postulates and theorems. The five postulates of Euclid. Showing the relationship between axiom and theorem, for example: (Axiom)

1. Given two distinct points, there exists one and only one line through them. (Theorem)
2. (Prove) Two distinct lines cannot have more than one point in common.

Lines and Angles :-

- If a ray stands on a line, then the sum of the two adjacent angles so formed is $\mathbf{1 8 0}$ degrees and the converse.
- If two lines intersect, vertically opposite angles are equal.
- Lines which are parallel to a given line are parallel.

Triangles:-

- Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence).
- Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence).
- Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence).
- Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle. (RHS Congruence).
- The angles opposite to equal sides of a triangle are equal.
- The opposite sides to equal angles of a triangle are equal.
- If a line is drawn parallel to one side of a triangle to intersect the other two sides in different points, the other two sides are divided in the same ratio.
- If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
- If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
- If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
- If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.

Quadrilaterals :-

- The diagonal divides a parallelogram into two congruent triangles.
- In a parallelogram opposite sides are equal, and conversely.
- In a parallelogram opposite angles are equal, and conversely.
- A quadrilateral is a parallelogram if a pair of its opposite sides is parallel and equal.
- In a parallelogram, the diagonals bisect each other and conversely.
- In a triangle, the line segment joining the midpoints of either two sides is parallel to the third side and in half of it and (motivate) its converse.

Circles :-

- Equal chords of a circle subtend equal angles at the centre and (motivate) its converse.
- The perpendicular from the centre of a circle to a chord bisects the chord and conversely, the line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- Equal chords of a circle (or of congruent circles) are equidistant from the centre (or their respective centres) and conversely.
- The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- Angles in the same segment of a circle are equal.
- If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle.
- The sum of either of the pairs of the opposite angles of a cyclic quadrilateral is 180° and its converse.
- Tangent to a circle at, point of contact.
- The tangent at any point of a circle is perpendicular to the radius through the point of contact.
- The lengths of tangents drawn from an external point to a circle are equal.

Areas :-
Area of a triangle using Heron's formula, Area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of $60^{\circ}, \mathbf{9 0}^{\circ}$ and 120°.

Surface Areas \& Volumes :-

Surface areas and volumes of spheres (including hemispheres) and right circular cones. Surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones.

Statistics :-

Bar graphs, histograms (with varying base lengths), and frequency polygons. Mean, median and mode of grouped data.

Probability:-

Classical definition of probability. Simple problems on finding the probability of an event.

Trigonometry:-

Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios whichever are defined at 0° and 90°. Values of the trigonometric ratios of $30^{\circ}, 45^{\circ}$ and 60°. Relationships between the ratios.

Trigonometric Identities :-

Proof and applications of the identity $\sin ^{2} A+\cos ^{2} A=1$. Only simple identities to be given.

Heights \& Distances :-

Angle of elevation, Angle of Depression. Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only $30^{\circ}, 45^{\circ}$, and 60°.

